
VISUAL LANGUAGE RECOGNITION WITH A FEED-
FORWARD NETWORK OF SPIKING NEURONS

Craig Rasmussen and Garrett Kenyon
Los Alamos National Laboratory

CCS-7, B287, Los Alamos, NM 87545

Matthew Sottile
Galois, INC

421 SW 6th Ave. Suite 300, Portland, OR 97204

ABSTRACT

An analogy is made and exploited between the recognition of visual objects and language parsing. A subset of regular
languages is used to define a one-dimensional ‘visual’ language, in which the words are translational and scale invariant.
This allows an exploration of the viewpoint invariant languages that can be solved by a network of concurrent, hierarchi-
cally connected processors. A language family is defined that is hierarchically tiling system recognizable (HREC). As
inspired by nature, an algorithm is presented that constructs a cellular automaton that recognizes strings from a language
in the HREC family. It is demonstrated how a language recognizer can be implemented from the cellular automaton using
a feed-forward network of spiking neurons. This parser recognizes fixed-length strings from the language in parallel and
as the computation is pipelined, a new string can be parsed in each new interval of time. The analogy with formal lan-
guage theory allows inferences to be drawn regarding what class of objects can be recognized by visual cortex operating
in purely feed-forward fashion and what class of objects requires a more complicated network architecture.

KEYWORDS

pattern recognition, neural networks, parallel parsing algorithms, parallel computation, machine learning

1. INTRODUCTION

We make an analogy between the recognition of objects by visual cortex and the recognition of strings by
language parsers. Each performs a recognition task; one on two-dimensional patterns of bits in an image and
the other on one-dimensional patterns of characters in a string. This analogy is made more precise by re-
search on two-dimensional picture languages. Blum and Hewitt (1967) developed the first automaton model
for recognizing picture languages followed later by the development of tiling systems that can also recognize
these languages (Giammarresi and Restivo 1992, 1997).

We draw attention to an ubiquitous feature of biological, visual object recognition; visual objects remain
recognizable at any location and scale in the visual scene. For example, an oncoming car is still recognized as
a car, even as the relative size of the car increases as it draws closer. In order to make progress, we reduce the
complexity of a two-dimensional visual system by considering only one-dimensional strings. As suggested
by the visual system, we present a family of ‘visual’ languages representing fixed length strings that are
viewpoint (scale and translation) invariant.

The formalism for defining visual languages is adapted from one-dimensional versions of tiling recogniz-
able picture languages (REC) and is presented in Section 2. Strings in this language family are finite, can be
defined by regular expressions, and are thus recognizable by finite automata. We present an algorithm for
constructing a cellular automaton (CA) that will recognize a visual language in parallel, each automaton in
the two-dimensional grid operating on separate substrings concurrently. We note that the CA so constructed
has similarities with the hierarchical structure in visual cortex. Ambiguities arising from tiling systems and
viewpoint invariance are discussed in Section 3 and we conclude the paper by briefly speculating on the rele-
vance of formal language theory to computation in visual cortex and by suggesting further work.

2. METHODOLOGY

The visual language family is perhaps best understood in terms of two-dimensional tiling recognizable
picture languages, denoted by REC (see Anselmo et al 2009 for details). The REC language family is defined
by a tiling system (Σ, Γ, Θ, π) where Σ and Γ are finite alphabets, Θ is a finite set of tiles over Γ, and π :
Γ→Σ is a projection. A tile is a picture of size (2,2) (2 rows and 2 columns) and B2,2(p) is the set of all sub-
pictures of size (2,2) that produce a picture p.

A key point is the concept of a local language Li ⊆ Γi∗∗ where Γi∗∗ is the set of all possible pictures over
the local alphabet Γi. A language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system projecting Li to
L. We consider only the one-dimensional analog of REC, the class of regular string languages. In one dimen-
sion, a tile as described in Giammarresi and Restivo (1997) reduces to B1,2. However, we extend this slightly
to consider tiles of size (1,n). In particular, we examine local languages expressed in terms of overlapping
tiles of size (1,3). The tiles are made overlapping in order to more closely conform to the visual system as
explained below.

Visual processing in the brain takes place in layers of neurons. In a feed-forward model, as neurons in one
layer spike they pass on this information via synapses to neurons in the successive layer. A two-dimensional
representation of this layering is shown in Figure 1, where each neuron in layer L1 receives afferent input
from a neighborhood of neurons in layer L0. For all the cases explored here, the size of the neighborhood is 3,
although in visual cortex the neighborhood can be larger (Alonso et al 2001).

Fig. 1. A two-dimensional network of spiking neurons connected by modifiable synapses.

In Figure 1, three neurons in layer L0 are drawn as solid black circles indicating they are spiking at some
frequency. This information is transmitted upward causing three neurons in layer L1 to spike in turn, although
the middle neuron is more active as all of the neurons in its afferent neighborhood are spiking strongly. This
causes neuron A in layer L2 to also begin spiking. It is important to note the geometry in Figure 1. While
there are two spatial dimensions (x,L), the neurons are actually distributed in a three-dimensional lattice with
neurons in L1 and above stacked in the third dimension. This stacking allows neurons to be tuned to respond
to different combinations of inputs. If neural activity in L0 is encoded as a string, with spiking encoded as a 1
and not spiking as a 0, then a neuron of tuning 01 in L1 might respond to the input string '000' while another
neuron at the same spatial location might respond to '111'.

Also note that the number of spatial sites in x drops by a factor of 2 in each successive layer. This reduc-
tion in x allows an increase in the number of different tunings that can be detected at a layer without the total
number N of neurons in a layer growing appreciably. In effect, specific spatial information input to L0 is
transformed into another representation by the computation being done within each layer. More on this im-
portant concept will be provided later.

2.1 Finite-State Machine Construction

As seen in Figure 1, visual cortex can be viewed as a pipeline with two-dimensional visual information
flowing in at the bottom and working its way up the visual hierarchy. By contrast language processing (pars-

ing) by compilers takes input as a string of characters and processing takes place one character at a time.
Thus visual processing is inherently parallel while string parsing (recognition) is most commonly performed
serially. We explore the possibility of recognizing an input string in parallel by analogy with visual cortex.
Assuming overlapping tiles B1,3 of size 3, the tiles can be arranged spatially to provide the connectivity pat-
tern shown in Figure 1. We also assume a finite input string and that the number of processing elements (neu-
rons), N0, in the first layer L0 is greater than or equal to the length l of the input string. Furthermore, addi-
tional processing elements are distributed in multiple layers Li, with the total number of layers (system
height) M such that M ≥ log2 (N0). Each processing element ni,j receives input from 3 elements in the preced-
ing layer, Li-1.

A finite input string from language L is over the alphabet Σ={0,1} where L ⊂ Σ∗. A local language L1 is
defined over a local alphabet Γ1 such that L is a projection of L1. In general Γ1 is constructed from the set of
tiles {'000', '001', '010', '011', '100', '101', '110', '111'} of all possible combination of inputs from L0. Likewise,
additional local languages Li are defined over alphabets Γi at each layer in the hierarchy. The local alphabets
are subsets of the tiles B in the preceding layer. The length of strings processed by a layer satisfies the recur-
rence relationship li = li-1/2. At the top of the hierarchy there is one final local alphabet Γh. This alphabet cor-
responds to a set of neurons nh,1, at a single spatial site, whose receptive fields span the entire input space in
L0. This set is able to recognize strings in L.

We define a language L ⊂ Σ∗ to be hierarchically tiling system recognizable (HREC), if it can be obtained
from successive projections of local languages Li. This system (local tiling sets plus projections) is effec-
tively a description of the state-graph of a cellular automaton that recognizes a visual language. Because of
the close correspondence between the construction of the cellular automata recognizing HREC languages and
visual cortex, we assume that visual cortex is capable of recognizing this family of languages (though not
limited to this family).

2.2 Language of Line Segments

Consider the language of finite line segments, L(line) over the character set Σ = {0,1} . This language can
be represented by L(line) = 0+ + (1)+ + 0+. L(line) consists of a background of zeros and a foreground of any
number 0 < n < N-1 of ones. Notice that the language can also be written as L(line) = 0+ + (1)n + 0+ as this
form can be transformed to regular form by concatenating strings of different scales; writing it the latter way
emphasizes the scale invariance. Translational invariance occurs via the padding of the foreground pattern on
either side with zeros. This allows the line segment to be translated side to side and still be recognized as a
line segment.

A cellular automaton can be constructed that will recognize L(line). We now provide an overview of this
construction; more complicated examples have been examined, e.g., a dashed-line language, but because of
space considerations these examples are not shown here. At layer L1 the local character set is Γ1 = {01, s001,
s011, e110, e100, 11} where the characters are constructed from tiles over combinations of characters in L0 that
are present in the language. These character combinations are 01 = '000', s001='001', s011='011', e110= '110',
e100='100', and 11='111'. Note that the two combinations '010' and '101' are not members of Γ1 because they
never occur in strings from L(line) (except for the trivial string of only one '1'). The symbols s and e are used
because character combinations making these L1 characters signal the start and end of the line segment.

The process of building local character sets at each layer continues until the top of the hierarchy is
reached. These local sets Γi are created from combinations of characters in the previous layer. The local sets
all have symbols representing zeros 0i, ones 1i, and the start and end symbols, si and ei respectively. At the
top of the hierarchy, there will be one set of neurons whose receptive fields span the entire input space in L0
and this set is able to make a decision as to whether there is a line segment.

Each local language Li is a description of the original language, but constructed from the local character
set Γi representing the enhanced scale. The scale is enhanced because any character in Γi is based on three
characters from Γi-1 (recall that the number of spatial nodes decreases by a factor of 2 at each layer). An ex-
ception to this rule is that sometimes there are pass through characters that simply carry information from
one layer to another. For example, a line segment of scale n = 8 is recognized within the receptive field of

some node at layer L3 (3 = log2(8)) and can be recognized at this layer. Thus in layer L3 the character cyes will
be activated and this character is passed up the hierarchy indicating a string from L(line) has been recog-
nized. Illegal combinations of characters can also be detected, so in general, a local character set consists of
characters of the form Γi = {0i, si, 1i, ei, cno, cyes}.

3. AMBIGUITY

As described in Giammarresi and Restivo (2008), the definition of languages in terms of recognizability
by tiling systems (local languages and projections) is implicitly non-deterministic (ambiguous). Informally, a
tiling system is unambiguous if every picture in a language has a unique counter-image in its corresponding
local language. Indeed, Anselmo et al (2006) have shown that it is undecidable whether a given tiling system
is unambiguous or not. This may seem like a severe restriction, however in this section we make the case that
visual cortex must exploit ambiguity in some form in recognizing visual languages.

3.1 Constraints

At this point it is time to step back and consider what we are trying to accomplish. The goal is to con-
struct cellular automata that recognize a viewpoint invariant subset V of the hierarchically-tile-able lan-
guages. V is a subset of regular languages and we know it is possible to construct an automaton that will rec-
ognize any regular language, even a specific random string. However, this finite automaton would have a
number of specific states (nodes) and would be very brittle in that it could only recognize one very specific
pattern at one scale in the family of regular languages.

On the other hand, a finite automaton could be constructed that would recognize the set of all strings S ⊂
Σ∗ whose length is l < N0. A layer’s local character set Θi would then contain all three-way combinations of
characters in the previous set Θi-1. The size of the character set grows as the cube, size(Θi) = size3(Θi-1) where
size(Θ0) = 2. Thus the last recognizing layer would contain an exponentially large number of characters.

This general recognizer would allow visual objects to be constructed out of many smaller recognizable
objects. For example, a dog has a body, fours legs, a face, and a tail. However, the brain simply does not have
enough resources to retain all possible character combinations. Each distinct cortical area (e.g., V1, V2, and
V4) in visual cortex has approximately the same number of neurons. As we have assumed that spatial resolu-
tion only drops off by a factor of two at each layer, the number of local characters can only increase by a
roughly a factor of two at each layer. This is a very tight constraint as the growth rate in the size of the local
character set is linear, size(Θi) = k, size(Θi-1) << size3(Θi-1) with k ∼ 2. The important conclusion to make from
this simple analysis is that we must ruthlessly reduce (constrain) the number of local characters in whatever
way possible.

3.2 Scale and Position Information

From the example of the language L(line), it was shown that a line segment of scale n = 8 is recognized
at layer L3 and that the character cyes is activated and passed on to higher layers. Note that a local character
c3,yes could be created that carries scale information as well as recognition. However, because this would lead
to an increase in the number of total states (because size information is associated with each possible object
recognized), we assume that size information is discarded in favor of conserving the total number of states. It
may be possible that some relative size information is retained in visual cortex, but not that all complete size
information is retained. It is likely that a more complex network topology is employed rather than a purely
feed-forward network to compute size.

It may appear surprising to see that size can be described with a regular language subset and not require a
more complex language such as a context-free language. This apparent contradiction occurs because we are
considering only strings of fixed length. Thus a finite automaton can be constructed that measures the length
of the line segment. Likewise, position information could be recorded at the point a string is recognized, per-

haps with the character ci,j,yes. However, allocating resources to record position information would also ex-
plode the number of characters (states) in the recognizer.

Thus, at the top of the hierarchy, we argue that relatively little spatial and size information about an object
is kept by visual cortex in order to conserve resources. Retaining only the fact that an object is present allows
many more objects (patterns of strings) to be represented. In effect, spatial and position information has been
traded for the ability to recognize more objects. It is thought that position information is obtained from the
separate dorsal pathway in visual cortex. We predict that some other mechanism may also be present to
measure size information.

3.3 Equivalence Classes

Ignoring all size and location information in the hierarchy helps reduce the proliferation of states, al-
though this alone may not meet the resource constraint on the number of actual states. We are forced to
eliminate the combinatorial explosion of possible states (enumerated by characters) by combining states into
equivalence classes. For example, for the line-segment language we combine the local characters s001 and s011
in Γ1 into one character represented by the regular expression s1 = s001 + s011. Likewise, we combine the line
end characters so that e1 = e110 + e100.

Support for combining characters into equivalence classes comes from considering the translation of an
input pattern by one character position either to the left or to the right. A string of zeros '00000' isn't modified
by a translation so the zero state can't be reduced further and a tile covering this string is labeled by the local
character 01. Likewise the tile covering a string of ones is labeled 11. However, consider a “dashed” string
'01010101'. If the string is shifted to the left or right by one character, it will either appear as the tile '010' or
'101' to a detector node. Surely this level of detail (relative position in a dashed line) can't be important —
especially since the language family being considered is translationally invariant — so the two characters are
combined into an equivalence class (a single character) representing that a portion of a dashed line, d1 = '010'
+ '101', has been detected. A similar argument holds for the start and end characters s1 and e1.

After taking into consideration translational invariance, the general local character set in L1 is Γ1 = {01, s1,
d1, 11, e1, cyes, cno}. Since the recognition characters cyes and cno are not combinable with other characters in
later layers, the effective size of Γ1 is reduced from eight to five characters. Combining like characters under
translation is but one way to form equivalence classes. This may not even lead to ambiguity as it may be just
used as a way to reduce redundant information (recall the use of overlapping tiles). In general, equivalence
classes add ambiguity. However, equivalence classes are likely necessary from a resource point of view and
if so visual cortex must be tolerant of a certain level of ambiguity.

In summary, we define a visual language V as a member of the HREC family constrained in two impor-
tant ways. First, we assume that V is invariant under translation; the input string (padded by zeros at either
end) may be presented at any position j in L0. Second, we assume that V is scale invariant; the one-
dimensional “image” represented by the input string may expand or shrink and still be a member of the lan-
guage. This definition is analogous to the visual system in that it can recognize a predator, for instance, no
matter where the predator appears in the visual frame. A predator will also be recognized both relatively near
and far in the visual frame.

Manually constructing a CA recognizing a visual language is tedious because it requires constructing lo-
cal character sets for separate strings at every scale n. It also requires constructing equivalence classes by
considering string translations. This begs for machine construction of the recognizer. We have implemented
a recognizer using spiking neurons with the PetaVision1 neural simulator. In this implementation a separate
neuron was assigned to each character in a local set with the network connectivity as shown in Figure 1.

The PetaVision recognizer was tested by generating strings from L(line). The recognizer accepted all
strings from L(line) and none that were not in the language. The next step in this line of research is to at-
tempt to learn synaptic weights for a complete CA hierarchy for a given language, using spike-timing-
dependent synaptic plasticity (STDP, Song et al, 2000). This would allow a recognizer to be learned and not
require tedious manual construction.

1 http://sourceforge.net/projects/petavision/

CONCLUSIONS

We have begun to explore the question of which viewpoint invariant languages can be solved by a net-
work of concurrent, hierarchically connected processors. This has led to the definition of a language that is
hierarchically tiling system recognizable HREC. This language family is closely related to the REC family of
languages.

A one-dimensional visual language was defined as an HREC language that is translational and scale
(viewpoint) invariant. An algorithm was presented that constructs a recognizer for an HREC language and
recognition of the line language was considered. We demonstrated that a recognizer can be implemented with
a network of spiking neurons in PetaVision.

However, several problems were discovered while considering one-dimensional visual languages. Some
of these problems are related to aspects of viewpoint invariance and others related to ambiguity. Regarding
ambiguity, it is interesting to recall that it has been shown to be undecidable whether a particular REC is am-
biguous or not. Perhaps ambiguity at some level is required for visual processing or is resolved by a higher
level of computation than can be provided by a finite state automaton.

Because of an extremely tight resource constraint (linear growth rate in the size of a layer’s local charac-
ter set), only a small subset of possible local characters may be retained (in the form of equivalence classes).
This implies that vision must be as much about what we don’t (cannot) see as about what we can see. This
can be seen as a positive, because as a consequence the brain must have learned how to replace specificity
with generality. This generality must in some way decrease the brittleness of object recognition, as the loss of
a few bits due to noise in an image doesn’t significantly degrade performance.

We claim that formal language theory can provide guidance — especially concerning size and location in-
formation as discussed above — in understanding how computation is done in visual cortex. In the process of
studying this relationship, we have discovered an algorithm (potentially new) for constructing a cellular
automaton that will process a series of finite length strings in log(N0) time (wall clock) with N0 nodes in L0
processing concurrently.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation grant 0749348 and by the Los Alamos Na-
tional Laboratory LDRD program under grant 2009006DR.

REFERENCES

Alonso, J. et al, 2001. Rules of Connectivity Between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex.
Journal of Neuroscience, Vol. 21, pp 4002–4015.

Anselmo, M. et al, 2006. Unambiguous Recognizable Two-Dimensional Languages. RAIRO – Inf. Theor. Appl., Vol. 40,
pp 277–293.

Anselmo, M. et al, 2009. A Computational Model for Tiling Recognizable Two-Dimensional Languages. Theoretical
Computer Science, Vol. 410, pp 3520–3529.

Blum, M. and Hewitt, C., 1967. Automata on a Two-Dimensional Tape. IEEE Symposium on Switching and Automata
Theory, Vol. 6, pp 2–3.

Giammarresi, D., and Restivo, A., 1992. Recognizable Picture Languages. International Journal of Pattern Recognition
and Artificial Intelligence, Vol. 6, pp 241–256.

Giammarresi, D., and Restivo, A., 1997. Two-Dimensional Languages. In Handbook of Formal Languages, Rozenberg,
G. et al., Eds. Springer Verlag, London.

Giammarresi, D., and Restivo, A., 2008. Ambiguity and Complementation in Recognizable Two-Dimensional Lan-
guages. In Fifth IFIP International Conference on Theoretical Computer Science, G.A. et al., Eds., Vol. 273.
Springer Verlag, London.

Song, S. et al, 2000. Competitive Hebbian Learning Through Spike-Timing-Dependent Synaptic Plasticity. Nature
Neuro-science, Vol. 3, no 9, pp 919–926.

